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Calculations of concentrations of clusters and some equilibrium and nonequilibrium states of gases by the for-
mulas obtained in [Inzh.-Fiz. Zh., 54, No. 3, 438–442 (1988)] and on the basis of the hypothesis on the ex-
ponential size-distribution of clusters are presented.

In modern science, it is common practice to measure the amount of a substance in moles — the measurement
unit determined in terms of the structural elements in the considered system. Most of the difficulties in the description
of complex systems are reduced to the determination of which objects in the system under consideration are the struc-
tural elements. In particular, in rarefied gases the molecules, which are, by definition, the carriers of the chemical
properties, are taken as the structural elements. Physical properties of real gases, viz., pressure, temperature, and trans-
port properties, are determined by thermal motion and interactions of not only molecules but also their associations,
clusters, or polymolecules. The existence of clusters is caused by a complex character of interactions of electrically
neutral formations from moving charges which are the molecules. A gas model, which considers them as individual
subjects of the observed processes, will be called a cluster model. The main difficulty of the model is the determina-
tion of the concentrations of clusters and their dynamics with changes in the macroparameters: pressure, temperature,
chemical composition of the mixture, and external effects.

In the present paper, we consider two methods of calculation of the concentration of clusters in gases. The
results for the compression factor and the coefficient of viscosity obtained by these methods showed that use of the
cluster model allows one to describe some observed special features of both equilibrium and nonequilibrium states and
also to predict yet unknown properties of real gases.

The Dynamic Method of Determination of the Cluster Composition in Gas Mixtures. In [1, 2], the author
gives a scheme of calculation of clusters in gas mixtures which is based on the kinetic theory. The calculations
showed that at pressures from atmospheric to several tens of atmospheres and temperatures close to normal, dynamic
clusters, mainly in the form of dimers, play an appreciable role in gases. In this method, such a pair of colliding
molecules, the collision time (a quasi-bound state) of which is not less than the time of free flight of molecules deter-
mined by the formulas of the kinetic theory of gases, is believed to be a dimer. The processes of formation and de-
composition of these clusters, which are described by the reversible laws of dynamics, do not lead to generation of
entropy; therefore, these clusters fit into the group of dynamic clusters.

Under the conditions where trimers and quadromers begin to play an appreciable role, their concentration
can be found by the iteration method, where the dimers found in the first iteration are considered to be the compo-
nents with a double mass of particles and the corresponding collision cross section. Then, in subsequent iterations
the concentrations of larger-size clusters are found by determining such clusters as a dimer consisting of a monomer
and a dimer (trimer) or of two dimers (quadromer). By way of example, Fig. 1 gives the results of calculation of
their concentrations in argon obtained after three iterations. Effective collision diameters computed by the reference
data on the coefficient of self-diffusion [3] and its temperature dependence [1] were used in the calculations. The
character of the distribution obtained suggests that the quantity of clusters decreases exponentially with increase in
the cluster size and gives grounds for the development of another scheme of calculation of cluster concentrations in
dense gases (the results of the calculations by this scheme, which will be described in what follows, are presented in
Fig. 1, curves 1 and 2).
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In addition to the known characteristics of particle collisions in the cluster model [1, 2], we introduced the
so-called stickiness parameter δ, whereby one can allow for special features of interactions of molecules, in particular
the effects related to the changes in orientation due to collisions and to the effect of radiation. At small concentrations
of dimers this parameter is determined by the distance passed by a molecule which is in a quasi-bound state during
collisions. In dense gases, when the iteration method is used, the considered particle can be in a bound state; therefore,
it makes an appreciable contribution to the mean stickiness parameter, since this parameter can be as large as is
wished for bound particles. Any known characteristic of a real gas, e.g., the compressibility factor, can be used for
calculation of δ.

This method is applicable to the description of mixtures containing several chemical components. Thus, in [1],
calculations of an excess mixing volume ∆V ⁄ V, which are in satisfactory agreement with the experiment, are presented.
Usually, the excess volume is positive. The calculations by the described scheme showed that under certain conditions
a negative excess volume can be observed, which can be applied in practice to gas packing with use of the corre-
sponding admixtures. As an example, Fig. 2 gives a three-dimensional graph which is convenient for a search analysis;
the graph shows a transition of the relative excess volume ∆V ⁄ V through zero (for the considered hydrogen–argon sys-
tem this occurs at pressures higher than 6 MPa). In the calculations we used the effective collision diameters σ11 =
0.265 nm and σ22 = 0.371 nm calculated from the reference values of the coefficients of self-diffusion [3] by a for-
mula which is a limiting relation for the true coefficient of diffusion when the concentration of the given component
tends to unity. It should be noted that in [1] the latter is given with an error in the numerical coefficient a, i.e., in
the calculations it should be used in the form
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Fig. 1. Distribution of the concentration of clusters Cg
(c) by their sizes in argon

(1) and hydrogen (2) at a temperature of 200 K and a pressure of 1.5 MPa;
dots, calculation by the formulas of the kinetic theory (δ = 6.5) [1, 2]; curves,
calculation by the formula of exponential distribution Cg

(c) = C1
(c) exp

[−β(g − 1)].

Fig. 2. Relative excess volume of mixing ∆V ⁄ V of the hydrogen–argon mix-
ture at a temperature of 200 K as a function of hydrogen concentration Λ (%)
and pressure p (MPa).
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 is the relative mass, a = 2663.5⋅10−25 J3 ⁄ 2K−3 ⁄ 2

× kmole−1 ⁄ 2; summation in (1) is taken over all indices from γ to 1 up to the number of components in the mixture

s; the superscripts at Ω(1.1)∗  reflect the degree of the cosine of the deflection angle and the dimensionless relative ve-
locity in the integrals with respect to these variables [4].

Method of Exponential Size-Distribution of Clusters. The method is based on the assumption that the quan-
tity of clusters decreases with increase in the cluster size, i.e., the quantity of molecules included; the portion of clus-
ters decreases exponentially. Besides the above-described calculations of concentrations of clusters by the iteration
method (Fig. 1), the results of computer experiments produce the basis for this assumption. For example, in [5] this
distribution was obtained for argon by the method of molecular dynamics and the Monte Carlo method. The distribu-
tion can be considered as a partial case of the Gibbs distribution if we assume that the energy of the cluster is in pro-
portion to the quantity of molecules included in it, g:

ng = n1 exp [− β (g − 1)] , (2)

where n1 is the number of molecules (monomers) included in the clusters per volume unit and β is the normalizing
factor.

For description of the transport processes in real gases when each cluster subcomponent is treated as an indi-
vidual subject, it is convenient to use the concentration found relative to the total number density of clusters of all
types:

Cg
(c)

 B 
ng

∑ 

g=1

r

 ng

 , (3)

where r is the largest size of clusters allowed for in the present problem with the molecules being included into con-
sideration as monomers with number density n1.

The formula of exponential distribution (2) gives the following group of equations for Cg
(c) and β:

C1
(c)
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 = 1 . (4)

One more equation for these quantities can be obtained from the determination of the mean molar mass of the cluster
mixture:

sMt =  ∑ 

g=1

r

 Cg
(c)

 Mg =  ∑ 

g=1

r

 Cg
(c)

g M1 . (5)

The cluster model of gas allows for the variability of the number of structural elements and, thus, the quantity
of moles with change in the state parameters; it is convenient to present the equation of state for each cluster subcom-
ponent in the form of the virial equation [4] taking into account only the second virial coefficient written for a certain
quantity of moles. Then, the mean molar mass of the whole cluster mixture is determined by the formula

sMt = 
ρRT

p (1 − b)
 , (6)

where b is the correction to the eigenvolume of particles related to the volume occupied by the gas.
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Expressing the concentration of a g-dimensional cluster Cg
(c) in terms of the concentration of monomers C1

(c)

by (2), with account for (6) we obtain
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(1 − b) p M1
 = C1

(c)
  ∑ 

g=1
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 . (7)

Thus, the system of r + 1 equations for determining Cg
(c) and β is written as follows:
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(c)

 exp [− β (g − 1)] − Cg
(c)

 = 0 ,

(8)

where g changes from 1 to r.
It is seen from the relations obtained that to find the unknown concentrations one should use experimental

data on the gas density at certain pressures and temperatures. The correction to the eigenvolume can be expressed in
terms of the effective collision diameter of molecules:

b = 
2ψ
3

 n
(n)πσ3

 . (9)

The parameter ψ makes it possible to allow for the fact that in the formation of clusters the eigenvolume can also
change.

An essential reason for the nonideality of gases in the cluster model is the variability of the quantity of clus-
ter moles, which is caused by their formation or decomposition with change in the parameters of state. A convenient
form of the equation of state of a real gas is the expression

p = zn
(n)

kT . (10)

The compressibility factor gives a portion of the molecules participating in creating pressure, which allows
one to describe it in the form

z = 
1

(1 − b)
  ∑ 

g=1

r

 Cg
(n)

 , (11)
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(n)
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 . (12)

The concentrations Cg
(n) determined in terms of the quantities Cg

(c) found from the system of equations (8) can
be expressed as
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 = Cg
(c)

 
n
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∑ 

g=1

r

 gng

 = Cg
(c)

 
1

∑ 

g=1

r

 gCg
(c)

 . (13)

Thus, we obtained the final formula for the compressibility factor
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z = 
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(14)

which is used for calculation.
Calculations and Comparison with Reference Data. Figure 3 and Tables 1 and 2 give the results of the

calculations of cluster concentrations based on the solution of the system of equations (8) for a number of gases
(argon, methane, hydrogen, water vapor) at different parameters of state. The required values of density and the molar
volume were taken from [3, 6, 7]. It is seen from Table 1 that, using the suggested method, we obtained data on
quantity of clusters, which contain up to 30 molecules, in argon at T = 273 K and a pressure of 30–40 MPa. The
effect of clusters on the compressibility factor is shown by the example of methane (Table 3). Similarly to argon
(Table 4), the compressibility factor calculated for methane is in good agreement with the available reference data.

The applicability of the cluster model to the description of transport properties is illustrated by the example
of calculations of the coefficient of viscosity (Fig. 4) with account for the fact that, under the given conditions, the
gas is considered as a multicomponent mixture of cluster subcomponents. The coefficient of viscosity of the cluster
gas is calculated by the formula of the kinetic theory of a multicomponent mixture, which for dense gases is written
as [2]

Fig. 3. Distribution of the concentration of clusters by their sizes as a function
of pressure calculated by the formula of exponential distribution Cg

(c) = C1
(c)

× exp [−β(g − 1)] in hydrogen (a) at a temperature of 200 K [1) 5, 2) 50, and
3) 100 MPa] and argon (b) at a temperature of 273 K [1) 5, 2) 30, and 3) 35
MPa].

Fig. 4. Dependence of the coefficient of viscosity of hydrogen (a) and argon
(b) on pressure at a temperature of 200 K (a) and 300 K (b): 1) [3]; 2) cal-
culation on the basis of the cluster model allowing for clusters up to g = 20
(a) and g = 30 (b) using the viscous effective collision diameter calculated
from the coefficient of viscosity at a normal pressure.
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where h = 8009⋅10−29 J1 ⁄ 2K−1 ⁄ 2kmole1 ⁄ 2.
The radial function with account for momentum transfer in collisions at a distance of the effective diameter

has the form [8]

TABLE 1. Relative Number Concentrations (number fractions) of Clusters Cg
(c) for Argon at a Temperature of 273 K (σ =

0.348 nm, found from the reference data for the coefficient of self-diffusion [3])

Size of the g cluster
Pressure p, MPa

5 25 35 40
1 0.8420 0.3606 0.1814 0.10498
2 0.1330 0.2306 0.1486 0.09436
3 0.0210 0.1474 0.1217 0.08482
4 3.3197⋅10–3 0.0943 0.0996 0.07624

5 5.2443⋅10–4 0.0603 0.0816 0.06853

6 8.2848⋅10–5 0.0385 0.0668 0.06160
7 0 0.0246 0.0547 0.05537
8 0 0.0158 0.0448 0.04977
9 0 0.0101 0.0367 0.04474
10 0 6.4413⋅10–3 0.0301 0.04022

11 0 4.1185⋅10–3 0.0246 0.03615

12 0 2.6334⋅10–3 0.0202 0.03249

13 0 1.6838⋅10–3 0.0165 0.02921

14 0 1.0766⋅10–3 0.0135 0.02625

15 0 6.8837⋅10–4 0.0111 0.02360

16 0 4.4014⋅10–4 9.0659⋅10–3 0.02121

17 0 2.8143⋅10–4 7.4243⋅10–3 0.01907

18 0 1.7994⋅10–4 6.0800⋅10–3 0.01714

19 0 1.1506⋅10–4 4.9791⋅10–3 0.01541

20 0 0 4.0775⋅10–3 0.01385

21 0 0 3.3392⋅10–3 0.01245

22 0 0 2.7345⋅10–3 0.01119

23 0 0 2.2394⋅10–3 0.01006

24 0 0 1.8339⋅10–3 9.04073⋅10–3

25 0 0 1.5018⋅10–3 8.12650⋅10–3

26 0 0 1.2299⋅10–3 7.30471⋅10–3

27 0 0 1.0072⋅10–3 6.56603⋅10–3

28 0 0 8.2482⋅10–4 5.90205⋅10–3

29 0 0 6.7546⋅10–4 5.30521⋅10–3

30 0 0 5.5316⋅10–4 4.76873⋅10–3
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TABLE 2. Relative Number Concentrations (number fractions) of Clusters Cg
(c) and the Parameter β (water vapor at the

saturation line; calculation in the approximation taking account of decamers with an effective collision diameter found by the
coefficient of viscosity at atmospheric pressure and the corresponding temperature [3])

Size of the g cluster,
parameter β

p = 0.101325,
T = 373.15

p = 0.47597,
T = 423.15

p = 1.5551,
T = 473.15

p = 18.674,
T = 633.15

1 0.9828 0.9495 0.886 0.3160
2 0.0169 0.0480 0.101 0.2162

3 2.915⋅10–4 2.425⋅10–3 0.011 0.1478

4 0 1.225⋅10–4 1.305⋅10–3 0.1011

5 0 0 1.484⋅10–4 0.0692

6 0 0 0 0.0473
7 0 0 0 0.0324
8 0 0 0 0.0221
9 0 0 0 0.0151

10 0 0 0 0.0104

β 4.0615 2.985 2.174 0.3798

TABLE 3. Compressibility Factor of Methane at T = 300 K (calculation by formula (14) in the approximation taking account
of clusters to 30mers)

p, MPa
Compressibility factor z

p, MPa
Compressibility factor z

[6] calculation [6] calculation

0.1 0.9983 0.9989 25 0.8630 0.8630

0.5 0.9916 0.9925 30 0.9152 0.9152

1.0 0.9933 0.9934 35 0.9770 0.9771

5.0 0.9196 0.9186 40 1.0438 1.0430

10 0.8553 0.8553 45 1.1133 1.1127

15 0.8228 0.8228 50 1.1839 1.1803

20 0.8283 0.8284 60 1.3266 1.2536

TABLE 4. Values of the Normalizing Factor β in (2) and the Compressibility Factor z for Argon at T = 273 K

p, MPa β
z

calculation by (14) data of [7]

5 1.8453 0.9591 0.9568

30 0.2987 0.9608 0.9620

35 0.1998 1.0026 1.0033

40 0.1066 1.0485 1.0507
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As applied to the cluster mixture of one chemical component, in these formulas the size of the g cluster plays the role
of the component number α and summation is taken over the sizes of all clusters under consideration, including mono-
mers. Thus, for example, in Fig. 4, the coefficient of gas viscosity is found as the sum of all partial contributions of
cluster subcomponents, i.e., summation is taken with respect to all clusters under consideration. As is seen from the
graphs presented, the cluster model describes, with an error within 20%, the experimental dependence of the viscosities
of argon and hydrogen on pressure. In this case, one of the reasons which leads to this dependence is revealed: the
increase of pressure results in an increase in the portion of heavy clusters whose partial coefficient of viscosity is
larger and, therefore, they contribute more to the momentum flux. One reason for the discrepancies is that in the cal-
culations one has to use parameters which characterize collisions of particles and which in due course were found by
the formulas based on the model of invariability of the number of moles. Some quantities, i.e., the parameters of pack-
ing or stickiness, have not been used earlier; therefore, there are no reliable methods of their determination. The cal-
culations conducted indicate that the variability of the number of moles greatly affects the properties of gases.
Therefore, use of even not well-developed methods of determination used in the above-stated computation schemes of
the parameters makes it possible to obtain interesting results within the framework of the suggested cluster model of
a real gas.

NOTATION

Dα, true coefficient of diffusion, m2/sec; xγ, number fraction of the molecules of the component γ; s, number
of components in the mixture; ng, number of clusters per volume unit, which contain g molecules, m−3; g, number of
molecules in the cluster; ∆V ⁄ V, relative excess volume of mixing; Λ, concentration of hydrogen, %; a, dimensional
numerical factor; Ω(1.1)∗  and Ω(2.2)∗ , dimensionless collision integrals; z, compressibility factor; T, temperature, K; p,
pressure, MPa; Yαγ, radial function; mα, molecule mass, kg; σαγ, effective collision diameter of the molecules, m;
σ11 and σ22, effective collision diameters of the molecules of the first and second gas, respectively; δ, stickiness pa-
rameter; Mαγ, reduced mass; sMt, molar mass of the cluster mixture, kg/kmole; Mg, molar mass of the g-dimensional
cluster; ρ, density, kg/m3; k, Boltzmann constant, J/K; R, universal gas constant, J/(mole⋅K); Cg

(n), concentration (frac-
tion) of clusters relative to the number of molecules, Cg

(c), concentration of clusters relative to the total density of clus-
ters; ψ, parameter of packing; n(n) and n(c), number density of all molecules and all clusters, respectively, m−3; r, size
of the largest cluster; η, coefficient of viscosity, µPa⋅sec; h, dimensional coefficient; τ, time of free flight, sec. Indices:
α and γ, numbers of chemical components in the mixture; (c), cluster.
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